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Abstract. It is proved that the turbulence entropy, defined in the (maximal) entropy method
of turbulence closure problem, does not attain a maximum value for stationary turbulence, and
a solution for the basic equations of the entropy method does not exist.

1. Introduction

Edwards and McComb (1969) proposed a maximal entropy principle for stationary
turbulence and developed the entropy method to deal with the closure problem in turbulence
theory. Leslie (1983) gave a critical account of the entropy method in his celebrated book.
Recently McComb (1990) made an effort to persuade readers that the entropy method is
reasonable and successful. In this comment, it is proved that the turbulence entropy does not
attain a maximum value for stationary turbulence and the solution for the basic equations
of the entropy method does not exist. Then some relevant issues are discussed.

2. The entropy method

The entropy of a system is

S = −κ

∫
P(X̄) ln P(X̄) dX̄. (1)

Here κ is the Boltzmann constant,̄X = {X1, X2, X3, . . .} denotes the state vector of the
system,Xi(i = 1, 2, 3, . . .) are the state variables, andP(X̄) is the probability distribution
function. An isolated system will evolve to reach a thermodynamic equilibrium where the
entropyS attains a maximum value. Edwards and McComb (1969) assume that the entropy
of stationary turbulence also attains a maximum value while the variables are subject to the
energy equation. Their working expression for the turbulence entropy is

S = S0 + S1 (2a)

S0 = 1
2κ

∑
i

[1 + ln(2πφi)] (2b)

S1 = 2κ
∑
ijm

[MijmMjimφm(φj − φi)/φi(ηi + ηj + ηm)2]. (2c)

Equation (2) is equation (7.99) from Leslie (1983), and corresponds to equation (7.92) in
McComb (1990). Here we adopt the notation used by Leslie (1983),φi is the average modal
intensity or energy, andηi is the dynamic damping coefficient. During the derivation of
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equation (2) (chapter 7 in Leslie’s book), it is implicitly assumed that the state variablesXi

are real, so the nonlinear interaction coefficientsMijm are also real. Of course Leslie did
not give an explicit expression for realXi and Mijm. An explicit expression for the real
state variablesXi of turbulence was derived by Qian (1983), and the corresponding real
coefficientsMijm are theAijm in Qian (1983).

By the entropy method, the response equation is given byδS = 0, or

∂S/∂ηi +
∑

n

(∂S/∂φn)(δφn/δηi) = 0 for all i (3)

which is equation (7.100) in Leslie (1983) or equation (7.88) of McComb (1990). The term
(δφn/δηi) in (3) is to be calculated by varying the following energy equation for a stationary
turbulence:

(νi − ν ′
i )φi = −4

∑
jm

[MijmMjimφm(φj − φi)/(ηi + ηj + ηm)]. (4a)

Equation (4a) is equation (7.60) from Leslie (1983). The sole application of the entropy
method which has been made up to now is to derive the inertial-range spectrum. In the
inertial range,ν ′

i = νi = 0, and the energy equation (4a) is replaced by

5(k) = ε (4b)

which is equation (6.71) in Leslie (1983) or equation (6.43) in McComb (1990). Here5(k)

is the energy transfer function and is invariant under the transformationφi → λφi and
ηi → λ2ηi , ε is the energy dissipation rate and is a constant. Equations (2)–(4) constitute
the basic equations of the entropy method.

3. Theorem of the non-existence of the maximum of turbulence entropy

Whether the entropy method is well ground has been a controversial issue. Leslie (1983)
expressed much doubt about it, and pointed out: ‘it seems most improbable that the entropy
will actually attain a maximum value if there are forces which prevent the system from
reaching equilibrium.’ McComb (1990) made an effort to defend the entropy method and
argued that the entropy method is reasonable and successful. In this section, we will prove
that the turbulence entropy does not have a maximum value under constraint (4a) or (4b),
and the solution for the basic equations (2)–(4) of the entropy method does not exist. First,
we prove the following lemma.

Lemma. S1 given in (2c) is negative, i.e.S1 < 0.

Proof. Let Wijm = (Mijmφjφm + Mjmiφmφi + Mmijφiφj )/(ηi + ηj + ηm). By using the
properties ofMijm, from (2c) we have

S1 = −κ
∑
ijm

[MijmWijm/φi(ηi + ηj + ηm)]

= −κ
∑
ijm

[MijmφjφmWijm/φiφjφm(ηi + ηj + ηm)]

= − 1
3κ

∑
ijm

[W 2
ijm/φiφjφm] < 0.

(5)

As mentioned before, theMijm are real, so theWijm are real. Actually we can prove the
lemma in another way. To a first-order approximation,P(X) = P (F) + P (1), P (F) is
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the Gaussian function andP (1) is the first-order correction.P(X) and P (F) are positive
numbers,P (1) is real. From equation (7.98) in Leslie (1983), we have

S1 = −(κ/2)

∫
{P (1)}2/P (F) dX < 0.

The partS0 of turbulence entropy in (2) corresponds to the Gaussian probability distribution,
and the partS1 represents the correction due to non-Gaussianity. Hence the physical
meaning of the above lemma is that the non-Gaussianity will decrease the entropy, which
is expected. �

Theorem. The turbulence entropy (2) does not have a maximum value under the constraint
(4a) or (4b).

Proof. Assume that the constraint is (4a) andS attains a maximum value atηi = η̄i and
φi = φ̄i . Obviouslyλη̄i andλφ̄i also satisfy the constraint (4a) for any positive numberλ.
Let S(λ), S0(λ) andS1(λ) denote the values ofS, S0 andS1 while ηi = λη̄i andφi = λφ̄i

in (2), then the above assumption about the maximum ofS implies thatS(λ) attains a
maximum value atλ = 1. By (2b), S0(λ) increases asλ increases, i.e.S0(λ) > S0(1) if
λ > 1. From (2c) we haveS1(λ) = S1(1)/λ, andS1(1) < 0 by the lemma, soS1(λ) > S1(1)

if λ > 1. HenceS(λ) > S(1) if λ > 1, i.e.S(1) is not a maximum value, which contradicts
the original assumption. Therefore,S has no maximum under the constraint (4a).

Similarly, assume thatS attains a maximum value atηi = η̄i and φi = φ̄i under the
constraint (4b). According to the property of5(k) mentioned above,λ2η̄i and λφ̄i also
satisfy the constraint (4b). Let S(λ), S0(λ) and S1(λ) denote the values ofS, S0 and S1

while ηi = λ2η̄i andφi = λφ̄i in (2), thenS(λ) attains a maximum value atλ = 1 by the
above assumption. By (2b), S0(λ) > S0(1) if λ > 1. From (2c) we haveS1(λ) = S1(1)/λ3,
and S1(1) < 0 by the lemma, soS1(λ) > S1(1) if λ > 1. HenceS(λ) > S(1) if λ > 1,
which contradicts the original assumption. Therefore, in the case of constraint (4b) S has
no maximum either. As a consequence, we have the following corollary.

Corollary. The solution of the basic equations (2)–(4) of the entropy method does not
exist.

The reader might wonder how McComb (1990) can obtain a ‘solution’ of (2)–(4) which
actually have no solution at all and ‘successfully’ derive the inertial-range spectrum. After
a careful examination of his solution, it is found that the variations inηi and φi , made
by McComb in his derivation, do not satisfy the energy equation. Therefore, McComb’s
mathematics is not in conformity with the premise of his entropy method that the variation
of ηi andφi are not independent and must be subject to the energy equation.

4. Discussion on variational approach

It is obvious that the value ofS is dependent of the choice of variables (Edwards and
McComb 1969). The real issue is whether the working expression forS used in the entropy
method (equation (2)) has a maximum value while the variables have already been chosen
and are subject to the energy equation. The elementary proof given in the above section
clearly proves that the working expression forS has no maximum value while the variables
have already been chosen and are subject to the energy equation, so the solution of the basic
equations of the entropy method does not exist.

It is interesting to discuss McComb’s comment on other variational approaches, which
was recently made in connection with his efforts to defend the entropy method. McComb
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(1990, p 294) said: ‘An alternative variational method has been proposed by Quian (1983),
but this treats the variation as ifω(k) andq(k) are independent. In fact, this is the same as
if the second term on the right-hand side of our equation (7.88) has been neglected. Hence,
it follows that Quian’s method is mathematically incorrect.’ This author is sorry to say that
McComb has mistaken Qian for Quian. McComb’sω(k) andq(k) correspond toηi andφi

of (4a), and his equation (7.88) is the same as (3).
The success of a variational approach depends upon the proper choice of the criterion

(or objective function) as well as the constraint condition which define admissible values
of the variables or parameters. The entropy method chooses the turbulence entropy as the
criterion and the energy equation as the constraint condition. This choice is not proper, since
the solution for the basic equations of the entropy method does not exist. A totally different
point of view is adopted in the variational approach proposed by Qian (1983), where the
criterion is the errorl(η) of the approximate solution of Liouville equation instead of the
turbulence entropy,η = {η1, η2, . . .} is a set of control parameters to be adjusted to minimize
the errorl(η) while the modal intensityφi are given. No one will doubt the legitimacy and
necessity of minimizing the errorl(η) of the approximate solution of Liouville equation.
Qian (1983) usedl(η), instead ofl(φ, η), to denote the criterion in order to emphasize
that φi are fixed while adjustingη so there is no variation ofφi . Hence Qian’s approach
is essentially different from the entropy method, and its variation equationδl(η)/δη = 0
is absolutely not ‘the same as if the second term on the right-hand side of McComb’s
equation (7.88) had been neglected’.

In McComb (1990), there is variation ofq(k) as well asω(k), and the admissible
values ofω(k) and q(k) (so the variationsδω(k) and δq(k)) are dependent and satisfy
the energy equation. In Qian (1983),ηi are control parameters to minimize the errorl(η)

while the φi are given, there is no variation ofφi , and the control parametersηi play a
dual role: admissible values of the control parameters can be any real number and not
subject to the energy equation, only their optimal values, which minimizes the errorl(η),
represent the ‘real physical quantity’ satisfying the energy equation. Hence the variation
in Qian’s control parametersηi are not subject to the constraint (4a) or (4b). The dual
role of control parameters is self-evident in an optimization problem. It is not proper for
McComb to assert that Qian’s method ‘is mathematically incorrect’, since the mathematics
used by Qian (1983) is in conformity with the premise of his variational approach that
the ηi are treated as control parameters to minimize the errorl(η) while φi are given. Of
course, Qian’s mathematics is certainly not in conformity with McComb’s idea ofη and
his entropy method. In a variational formulation of physical problems, it is allowable that
the admissible values of the variables might not conform to physical laws. For example, in
the case of variational principle of optics or mechanics, the admissible (or virtual) light or
particle paths might not conform to physical laws.

It is easy to prove that Qian’s criterionl(η), which represent the error of the approximate
solution of the Liouville equation, does have a minimum value while the modal intensityφi

are given, so the solution of the variation equationδl(η)/δη = 0 does exist. In Qian (1983),
both the variation equationδl(η)/δη = 0 and the energy equation are used to determineφi

andηi , so the resultantηi , representing optimal value of the control parameter, does satisfy
the energy equation. Of course, the admissible values of the control parameter might not
satisfy the energy equation. The variational approach proposed by Qian (1983, 1985, 1986,
1990) has been successfully applied to derive the velocity energy spectrum and the scalar
variance spectrum; moreover, it can be applied to account for intermittence of small scales
and calculate the flatness factor of the velocity derivative. All these theoretical predictions
are in agreement with experimental data.
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